Handling late data How to make right choice?

Bulanova Darya

Data Engineer

- 10+ in IT
- .Net developer
- Data Engineer @ Dodo Engineering
- SmartData conf ΠK
- DE or DIE meetup

linkedin.com/daryabulanova

fb.com/darya.bulanova.5

t.me/daryabulanova

Roadmap

• Chapter 1: Late Data

- Late data problem
- Data processing patterns
- Conclusion

• Chapter 2: Completeness

- Tools comparison (Spark Streaming, Apache Beam)
- Tradeoff: completeness, latency, cost
- \circ Conclusion

Preface

- **Completeness** data is considered "complete" when it fulfills expectations of comprehensiveness.
- **Correctness (accuracy)** the degree to which information accurately reflects an event or object described

Chapter 1: Late Data

Example: small business

Example: not so small business

++											
Field	Туре	Description									
+ Id PizzaId SaleDate	int int datetime	++ номер заказа идентификатор пиццы дата+время продажи заказа									
+		++									

Example: big business

Example: big business

Data is wrong

 Bounded data - a type of dataset that is finite in size bounded data

unbounded data

 Unbounded data - a type of dataset that is infinity in size

 Bounded data - a type of dataset that is finite in size bounded data

unbounded data

 Unbounded data - a type of dataset that is infinity in size

 Bounded data - a type of dataset that is finite in size bounded data

unbounded data

 Unbounded data - a type of dataset that is infinity in size

bounded data

• Deterministic

Fallacy №2: Time Domain

- Event Time the local timestamp assigned to the event by the producer at the time the event occurred.
- Processing Time the wall-clock time at which the event has been processed by the consumer.

Distrubuted System: Out-of-order data

unbounded data

Distrubuted System: Out-of-order data

unbounded data

Distrubuted System: Out-of-order data

Batch Processing: fixed window by processing time

Batch Processing: fixed window by event time

Batch Processing: Delay strategy

Batch Processing: Delay strategy

Batch Processing: Repetitive Runs Strategy

Batch Processing: Repetitive Runs Strategy

Batch Processing: Repetitive Runs Strategy

Stream processing: primitives

- Windows responsible for correctness
- **Trigger** when result is materialized
- Watermarks completeness threshold

Stream processing: windows by event time

Stream processing: triggers

- Repetative run
- Completeness

Stream processing: watermarks

- Perfect no such thing as late data; all data are early or on time
- Heuristic an estimate of progress that is as accurate as possible

Stream processing: watermarks

- **Perfect** no such thing as late data; all data are early or on time
- Heuristic an estimate of
 progress that is as accurate as
 possible

Lamdba architecture

Conclusion

- **Correctness** windows by **event-time**
- In distributed system you should care about time skew
- An event is late only when it has missed a deadline specific to the consumer.
- You should care about that **deadline** for **any data processing patterns**

Data processing patterns

Completeness summary

	early panes	full data	Completeness threshold
Batch processing	no	late	need
Stream processing	yes	earlier	need
Lambda arch	yes	late	need

Chapter 2: Completeness

Spark Streaming

Trigger:

• Repeated update triggers

Watermark:

• Garbage collection

counts incremented only for window 12:00 - 12:10

Late data handling in Windowed Grouped Aggregation late data that was generated at 12:04 but arrived at 12:11

Apache Beam

Trigger:

- Repeated update triggers
 - Unaliged
 - Aliged
- Completeness trigger

Watermark:

- Early pane
- On-time pane
- Late pane

Tradeoffs

- **Completeness:** How important is it to have all of your data before you compute your result?
- Latency: How long do you want to wait for data? For example, do you wait until you think you have all data? Do you process data as it arrives?
- **Cost:** How much compute power/money are you willing to spend to lower the latency?

Example: Billing Pipeline

Example: Live cost estimation pipeline

Example: Abuse detection pipeline

Example: Abuse detection backfilling pipeline

Conclusion

- Tradeoff is the balance between completeness, latency, cost
- Different frameworks can offer different ability to managed this balance

To deep dive

- <u>Streaming Systems</u> the second best book after designing data-intensive application :)
- Building Event-Driven Microservices: Leveragin Organization Data at Scale
- <u>The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in</u> <u>Massive-Scale, Unbounded, Out-of-Order Data Processing</u>
- Jay Kreps' "Questioning the Lambda Architecture"
- Out-of-Order Processing a New Architecture for High-Performance Stream Systems
- An optimistic approach to handle out-of-order events within analytical stream processing

Drafts

Природа данных

- Batch & Streaming
- Near-real time, microbatch

Cardinality

- *Bounded data* A type of dataset that is finite in size.
- *Unbounded data* A type of dataset that is infinite in size (at least theoretically).

Conclusion

- **Unbounded vs bounded data** is a better characteristic than stream or batch processing for data itself
- Batch processing and streaming **aren't** two **incompatible things**; they are a function of different windowing options.
- **Event time** and **processing time** are two different concepts, and may be out of step with each other.
- **Event-time skew** is a big problem
- **Completeness** is knowing that you have processed all the events for a particular window.
- It's very important to know about input source
- Late data is always a business requirements

Continuously growing data

Stream processing: watermarks

Note: Windows Strategy

Stream processing: watermarks

Stream processing: watermarks

Note: Time Domain

Batch Processing: Fixed Window by event time

- Delay
- Repetitive Runs

Note: Completeness

Streaming: Core Concepts (Spark Streaming)

Streaming

- **Highly unordered** with respect to event times, meaning that you need some sort of time-based shuffle in your pipeline if you want to analyze the data in the context in which they occurred.
- Of varying event-time skew, meaning that you can't just assume you'll always see most of the data for a given event time *X* within some constant epsilon of time *Y*.

Streaming

- Time-agnostic
- Approximation algorithms
- Windowing by processing time
- Windowing by event time

Time Agnostic

Approximation Algorithms

Windowing by procesing time

Windowing by event time

Windowing by event time

Triggers

Stateful streaming

- Each execution reads previous state and writes out updated state
- State stored in executor memory (hashmap in Apache, RocksDB in Databricks Runtime), backed by *checkpoints* in HDFS/S3

Watermarks

Unbounded data: Lambda Architecture

mysql> describe orders;											
+											
	Field		Туре		Null	Κ	ey	Description			
+		+ -		+•	+		+	+			
	Id		int		NO	Ρ	RI	номер заказа			
	UnitId		int		NO			номер пиццерии			
	Source		int		NO			источник заказа			
	State		int		NO			статус			
	SaleDate		datetime		NO		I	дата+время продажи заказа			
++											
5 rows in set (0.00 sec)											

Unbounded data: Batch - Session

Event-time skew

bounded data

