
Handling late data
How to make right choice?
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Preface

● Completeness - data is considered “complete” when it fulfills expectations of 
comprehensiveness. 

● Correctness (accuracy) - the degree to which information accurately reflects an event or 
object described
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Chapter 1: Late Data
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Example: small 
business

+----------+----------+---------------------------+

| Field    | Type     | Description      

+----------+----------+---------------------------+

| Id       | int      | номер заказа
| PizzaId  | int      | идентификатор пиццы           
| SaleDate | datetime | дата+время продажи заказа          
+----------+----------+---------------------------+
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Example: not so small 
business

+----------+----------+---------------------------+

| Field    | Type     | Description      

+----------+----------+---------------------------+

| Id       | int      | номер заказа
| PizzaId  | int      | идентификатор пиццы           
| SaleDate | datetime | дата+время продажи заказа          
+----------+----------+---------------------------+
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Example: big 
business
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Example: big 
business
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Fallacy №1: 
Cardinality
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● Bounded data - a type of 
dataset that is finite in 
size

● Unbounded data - a type 
of dataset that is infinity 
in size
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● Bounded data - a type of 
dataset that is finite in 
size

● Unbounded data - a type 
of dataset that is infinity 
in size



Fallacy №1: 
Cardinality
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● Deterministic



Fallacy №1: 
Cardinality
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Fallacy №2: Time 
Domain
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● Event Time - the local 
timestamp assigned to 
the event by the producer 
at the time the event 
occurred.

● Processing Time - the 
wall-clock time at which 
the event has been 
processed by the 
consumer.



Distrubuted System:
Out-of-order data
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Distrubuted System:
Out-of-order data
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Distrubuted System:
Out-of-order data



Batch Processing: 
fixed window by 
processing time
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Batch Processing: 
fixed window by 
event time
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Batch Processing: 
Delay strategy
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Batch Processing: 
Delay strategy
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Batch Processing: 
Repetitive Runs 
Strategy
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Batch Processing: 
Repetitive Runs 
Strategy
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Batch Processing: 
Repetitive Runs 
Strategy
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Stream processing: 
primitives
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● Windows - responsible for 
correctness

● Trigger - when result is 
materialized

● Watermarks - completeness 
threshold 



Stream processing: 
windows by event 
time
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● Repetative run
● Completeness

Stream processing: 
triggers



Stream processing: 
watermarks
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● Perfect - no such thing as 
late data; all data are 
early or on time

● Heuristic - an estimate of 
progress that is as 
accurate as possible



Stream processing: 
watermarks
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● Perfect - no such thing as late 
data; all data are early or on 
time

● Heuristic - an estimate of 
progress that is as accurate as 
possible



Lamdba architecture
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Conclusion

● Correctness - windows by event-time
● In distributed system you should care about time skew
● An event is late only when it has missed a deadline specific to the consumer.
● You should care about that deadline for any data processing patterns
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Data processing patterns 

Completeness summary
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early panes full data Completeness 
threshold

Batch processing no late need

Stream processing yes earlier need

Lambda arch yes late need



Chapter 2: Completeness
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Spark Streaming
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Trigger:

● Repeated update triggers

Watermark:

● Garbage collection



Apache Beam
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Trigger:

● Repeated update triggers
○ Unaliged
○ Aliged

● Completeness trigger

Watermark:

● Early pane
● On-time pane
● Late pane



● Completeness: How important is it to have all of your data before you compute your result?

● Latency: How long do you want to wait for data? For example, do you wait until you think you have all data? Do you 

process data as it arrives?

● Cost: How much compute power/money are you willing to spend to lower the latency?

Tradeoffs
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Example: Billing Pipeline
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Example: Live cost estimation pipeline
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Example: Abuse detection pipeline
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Example: Abuse detection backfilling pipeline
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Conclusion

● Tradeoff is the balance between completeness, latency, cost
● Different frameworks can offer different ability to managed this balance
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To deep dive

● Streaming Systems - the second best book after designing data-intensive application :)
● Building Event-Driven Microservices: Leveragin Organization Data at Scale
● The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in 

Massive-Scale, Unbounded, Out-of-Order Data Processing
● Jay Kreps’ “Questioning the Lambda Architecture”
● Out-of-Order Processing a New Architecture for High-Performance Stream Systems
● An optimistic approach to handle out-of-order events within analytical stream processing
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https://www.amazon.com/Streaming-Systems-Where-Large-Scale-Processing/dp/1491983876
https://www.amazon.com/Building-Event-Driven-Microservices-Leveraging-Organizational/dp/1492057894
https://research.google/pubs/pub43864/
https://research.google/pubs/pub43864/
https://oreil.ly/2LSEdqz
https://www.researchgate.net/publication/220538528_Out-of-Order_Processing_a_New_Architecture_for_High-Performance_Stream_Systems
http://ceur-ws.org/Vol-2135/SEIM_2018_paper_16.pdf


Drafts
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Природа данных

● Batch & Streaming
● Near-real time, microbatch

Cardinality
● Bounded data A type of dataset that is 

finite in size.
● Unbounded data A type of dataset that 

is infinite in size (at least theoretically).
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Conclusion

● Unbounded vs bounded data is a better characteristic than stream or batch processing for 
data itself

● Batch processing and streaming aren’t two incompatible things; they are a function of 
different windowing options.

● Event time and processing time are two different concepts, and may be out of step with each 
other.

● Event-time skew is a big problem
● Completeness is knowing that you have processed all the events for a particular window.
● It’s very important to know about input source
● Late data is always a business requirements
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Continuously growing data

47



Stream processing: 
watermarks
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Note: Windows Strategy
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Stream processing: watermarks
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Stream processing: watermarks
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Stream processing: 
watermarks
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Note: Time Domain
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Batch Processing: Fixed Window by event time

● Delay
● Repetitive Runs 

54



Note: Completeness
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Streaming: Core Concepts 
(Spark Streaming)
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Streaming

● Highly unordered with respect to event times, meaning that you need some sort of 
time-based shuffle in your pipeline if you want to analyze the data in the context in which 
they occurred.

● Of varying event-time skew, meaning that you can’t just assume you’ll always see most of 
the data for a given event time X within some constant epsilon of time Y.
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Streaming

● Time-agnostic
● Approximation algorithms
● Windowing by processing time
● Windowing by event time
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Time Agnostic
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Approximation Algorithms
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Windowing by procesing time
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Windowing by event time

62



Windowing by event time
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Triggers
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Stateful streaming

● Each execution reads previous state 
and writes out updated state 

● State stored in executor memory 
(hashmap in Apache, RocksDB in 
Databricks Runtime), backed by 
checkpoints in HDFS/S3 
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Watermarks
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Unbounded data: 
Lambda Architecture
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Пример
mysql> describe orders;

+----------+----------+-----+-----+---------------------------------+

| Field    | Type     | Null| Key | Description      

+----------+----------+-----+-----+---------------------------------+

| Id       | int      | NO  | PRI | номер заказа
| UnitId   | int      | NO  |     | номер пиццерии          
| Source   | int      | NO  |     | источник заказа  
| State    | int      | NO  |     | статус  
| SaleDate | datetime | NO  |     | дата+время продажи заказа          
+----------+----------+-----+-----+---------------------------------+

5 rows in set (0.00 sec)
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Unbounded data: 
Batch - Session
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Event-time skew
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Fallacy №1: Cardinality
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