Ingestion and historization in the Data Lake

lllia Todor

corporate.hrs.com

/lamtodor >fr HRS

IGEN IINANER b1 FEN Data Engineer
I u I u n u “ L AWS Cloud Practitioner Certified

HRS |

/lamtodor >fr HRS

e s oS S Data Engineer
I u I u n u " : AWS Cloud Practitioner Certified

HRS GROUP

HRS |

/lamtodor >fr HRS

e s oS S Data Engineer
Iu I u nu “ ; AWS Cloud Practitioner Certified

https://qgithub.com/iamtodor

https://stackoverflow.com/users/5151861/iamtodor

HRS GROUP

https://iamtodor.medium.com/

https://www.linkedin.com/in/iamtodor/

HRS |

https://github.com/iamtodor
https://stackoverflow.com/users/5151861/iamtodor
https://iamtodor.medium.com/
https://www.linkedin.com/in/iamtodor/

SFHRS

provides the world's premier lodging
experience to corporations globally.

50
markets worldwide > 800.000 Qe > 6 000
55,00% : u 1,000 yearly contacts :."‘ Global customers

employees with Hotels

cities globally

Lodging as a Service

CONTINUOUS
PROCUREMENT

Lodging as a Service

SFHRS

CONTINUOUS
PROCUREMENT

SMART
BOOKING

Lodging as a Service

CONTINUOUS
PROCUREMENT

SMART
BOOKING

TOUCHLESS
STAY

Request

HRS |

DataSource
Historical Changes
DatalLake
Data\Warehouse
Dashboards

>:HRS

Historization: the process >fr HRS

We wanted to move ingestions from DataSource into Data Lake along with applying historization
approach. The data we need in the DWH for reporting.

The idea of historization approach is to track historical changes.

Operation in the source DB = Field value valid_from valid_to
Insert Andrew 2021-01-01 | 2021-01-03
Update Mark 2021-01-03 | 2021-01-05

Update Daniel 2021-01-05 2099-12-31

HRS |

Architecture: abstract >+ HRS

By — =

loader Save data to S3 processor Save data to S3
landing bucket historized bucket

HRS | "

Architecture: in details >+ HRS

. Publish historized
— >

(_
DynamoDB counts to CloudWatch
Metadata

Publish db2 counts Count metrics app
to CloudWatch from historized data

to AWS CloudWatch

Save historized
Data > data to S3
Source
; Historization
AWS SNS: File
: : Save raw data . Lambda: Save raw data app
. arrived
Databgse:vl;mgranon to S3 landing Moving file to S3 vault
ervice bucket bucket

Athena DDL
creation

EMR Spark
clusters

HRS |

12

Infrastructure as a Code

HRS |

</>®
|- 7]

Q J

Code infrastructure
Code your infrastructure
from scratch with the
CloudFormation template
language, in either YAML
or JSON format, or start
from many available
sample templates

Amazon S3
Check out your
template code

locally, or upload it
into an S3 bucket

\I

==

AWS CloudFormation

Use AWS CloudFormation via
the browser console,
command line tools or APIs to
create a stack based on your
template code

[—

=1\
< / >@
—]
e
Output

AWS CloudFormation
provisions and configures
the stacks and resources

you specified on your

template

l|

> HRS

First part: global overview

> HRS

—

(—
DynamoDB
Metadata

Publish db2 counts Count metrics app
to CloudWatch from historized data
0 AWS CloudWatch

Data

Source

AWS

SNS: File Historization

1 : Save raw data 8 Lambda: Save raw data app
Databgse Mlgranon to S3 landing puiyed Moving file to S3 vault
i bueket bucket

Publish historized
counts to CloudWatch

Save historized
data to S3

EMR Spark
clusters

HRS |

Athena DDL
creation

14 |

First part: DMS >+ HRS

Publish historized
— counts to CloudWatch

—>

DB2 Metadata

Publish db2 counts Count metrics app
to CloudWatch from historized data
to AWS CloudWatch

Save historized

Data data to S3

Source

: Historization
AWS SNS: File
: ; Save raw data . Lambda: Save raw data app
: arrived
Databgsivr;mgrarlon to S3 landing i Moving file to S3 vault
anice bucket bucket

Athena DDL
creation

EMR Spark

clusters

HRS | 15

AWS DMS: Database Migration Service

il
000
000
000

=

Production database
on-premises
SOURCE

HRS |

RS
N’

AWS Database
Migration Service

Data migration for DevOps
(development & testing)

> HRS

diis

Development & testin
database in the clou
TARGET

AWS DMS: Database Migration Service >+ HRS

Source " Replication Target
Endpoint _ Task : Endpoint

HRS | 17

AWS DMS: Database Migration Service >+ HRS

AWS Secrets Manager

Source ”" Replication Target
Endpoint _ Task : Endpoint

HRS | 18

DMS: Replication Instance >f HRS

Replication instance type vCPU Memory (GiB)

Memory Optimized

dms.rd.large 2 1525
dms.r4.xlarge 4 30.5
dms.r4.2xlarge 8 61
dms.r4.4xlarge 16 122
dms.r4.8xlarge 32 244
dms.r5.large 2 16
dms.r5.xlarge 4 52
dms.r5.2xlarge 8 64

dms.r5.4xlarge 16 128

HRS |

DMS: Target Endpoint >r HRS

DMS: Target Endpoint >r HRS

'bucket _name'
‘prod/prefix’
: gzip

‘dataFormat=parquet;datePartitionDelimiter=DASH;datePartitionEnabled=false;datePartitionSequence=YYY
YMMDD ; '|

HRS |

DMS: Replication Task

HRS |

Source
Unload

Source
Database

Source
Capture

DMS

Target
Load

Replication

Process

DMS
Logs

Replication Task

Target
Apply

>

e
P

Target
Database

S

> HRS

22

DMS: Replication Task >f HRS

: !ImportValue source-endpoint-arn

HRS |

DMS: Replication Task >f HRS

: !ImportValue s3-prod-endpoint

DMS: Replication Task >f HRS

: !ImportValue replication-instance-arn

HRS |

DMS: Replication Task >f HRS

: '{"Logging": {"EnableLogging": true}}'

HRS |

DMS:

HRS |

Replication Task

{

"rules": [

{
"rule-type": "selection",
"rule-id": 1,
"rule-name": 1,
"rule-action": "include",
"object-locator": {

"schema-name": "schema_name",

"table-name": "table name"

>:HRS

First part: DMS >+ HRS

Publish historized
— counts to CloudWatch

—>

DB2 Metadata

Publish db2 counts Count metrics app
to CloudWatch from historized data
to AWS CloudWatch

Save historized

Data data to S3

Source

: Historization
AWS SNS: File
: . Save raw data . Lambda: Save raw data app
: arrived
Databgsivr;mgrarlon to S3 landing i Moving file to S3 vault
ance bucket bucket

Athena DDL
creation

EMR Spark

clusters

HRS | 28 |

Process automation and scaling >f HRS

A
L wanuaL (71 automaten

>

I
in DTN
R
‘ l
| i
I
l

First part: Metadata management

> HRS

——

Publish db2 counts Count metrics app
to CloudWatch from historized data
to AWS CloudWatch

Data —>

Source

: Historization
SNS: Fil
Databa:;lvh?i bt Save raw data arrive:je Lambda: Save raw data app
Senvi 9 to S3 landing Moving file to S3 vault
ervice bucket bucket

Publish historized
counts to CloudWatch

Save historized
data to S3

EMR Spark
clusters

HRS |

Athena DDL
creation

301

What is metadata itself > HRS

Date:

August 15, 2016

P~
-\”‘) 9
b ; Y} '—_-'\‘
P &5
!

HRS | Ingestion and historization in the Data Lake 31

Suitable tool for metadata >+HRS

CSV

Suitable tool for metadata >-HRS

CSV

DynamoDB

Suitable tool for metadata >+HRS

CSV

DynamoDB

DynamoDB “:"amazon

“" webservices™

config.json >r HRS

: "schema_name",
: "table_name",

HRS |

config.json >r HRS

config.json >r HRS

: "1970-01-01 00:00:00.000000",
"2021-05-11 00:00:00.000000",

HRS |

config.json >r HRS

config.json >r HRS

: "parquet”,

config.json >r HRS

config.json >r HRS

First part: Metadata management

> HRS

——

Publish db2 counts Count metrics app
to CloudWatch from historized data
to AWS CloudWatch

Data —>

Source

: Historization
SNS: Fil
Databa:;lvh?i bt Save raw data arrive:je Lambda: Save raw data app
Senvi 9 to S3 landing Moving file to S3 vault
ervice bucket bucket

Publish historized
counts to CloudWatch

Save historized
data to S3

EMR Spark
clusters

HRS |

Athena DDL
creation

42|

First part: DMS saving data

/8

Publish db2 counts
to CloudWatch

DynamoDB
etadata

Data

Source ' - p—

w0 AWS. __ Saveraw data S:lrﬁ\:/zile
atal gse vigrarion 44 g3 Janding
ervice bucket

Lambda:
Moving file

HRS |

> HRS

Publish historized

= counts to CloudWatch

Count metrics app
from historized data
to AWS CloudWatch

Save raw data
to S3 vault
bucket

Save historized
data to S3

o

Historization
app

Athena DDL

creation

J

EMR Spark
clusters

43|

DMS: saving data >+ HRS

: Fil
Datab AWI\‘:’. : Save raw data S;\lrﬁvgée Lambda: Save raw data
ata gse Migrarion 4 'aa|an ding Moving file N
e bucket bucket

HRS | 44 |

DMS: saving data >+ HRS

SNS: File

AWS
[i Save raw data . Lambda: Save raw data
Databgse Mlgrarlon to S3 landing alTiyed Moving file to S3 vault
ervice bucket bucket

HRS |

DMS: saving data >+ HRS

AWS SNS: File

[. Save raw data . Lambda: Save raw data
Databgse Mlgr aron 1083 landing alTiyed Moving file to S3 vault
cnice bucket bucket

HRS | 46 |

First part: DMS

Data
Source

HRS |

—>

> HRS

Publish historized

DynamoDB
Metadata

Publish db2 counts
to CloudWatch

= counts to CloudWatch

Count metrics app
from historized data
to AWS CloudWatch

Save historized
data to S3

NS: Fil
Datab. AWI\?‘ : Save raw data Sarﬁve:ie Lambda: Save raw data
o gse wigrarion 44 3 landing Moving file to S3 vault
i bucket bucket

Historization
app

Athena DDL

creation

EMR Spark
clusters

A7 |

AWS CloudWatch

HRS |

=i s
cQ

Amazon CloudWatch
Complete visibility into your
cloud resources and
applications

Collect
Metrics and logs from all
your AWS resources,
applications, and services
that run on AWS and
on-premises servers

{C&:
i

—)

Monitor

Visualize applications and

infrastructure with
CloudWatch dashboards;

correlate logs and metrics
side by side to troubleshoot

and set alerts with
CloudWatch Alarms

Automate response to
operational changes with
CloudWatch Events and
Auto Scaling

Analyze

Up to 1-second metrics,
extended data retention
(15 months), and
real-time analysis with
CloudWatch Metric Math

Q
&

it

oM

> HRS

Application
Monitoring

System-wide
Visibility

Resource
Optimization

Unified
Operational Health

48 |

AWS CloudWatch

Data Platform product
owner

HRS |

AWS CloudWatch

HRS |

Data Platform product
owner

He is happy when he
observes metrics

AWS CloudWatch

Average db2 count over 30 days with sliding window for 1 week 1h 3h 12h 1d 3d 1w custom - = Number v | Actions ~ 2oz e
16.6. 14.6. 1.63. 11.9. 24. 59.4.
All metrics Graphed metrics (6/84) Graph options Source
Math expression v @ Dynamic labels v @ Statistic: Average v Period: (multiple) v Remove all
Label Details Statistic Period Y Axis Actions

v @] Historization * SourceRecordCount * TableNam * Env: ... Average 30 Days > N a il x]

v] Historization * SourceRecordCount * TableNam: e * En... Average 30 Days > AN Val x]
@ Historization * SourceRecordCount * TableNam _da *... Average 30 Days > AN Al x) D ata P I atfo rm p rOd u Ct
(] Historization * SourceRecordCount * TableNam: Env: ... Average 30 Days > AN V%] Own e r'

v B Historization * SourceRecordCount * TableNam: * Env:... Average 30 Days > N 0

v @ Historization * SourceRecordCount * TableNam confi... Average 30 Days > N fa] [x] H L h h h

v @ Historization * SourceRecordCount * TableNam: tdet... Average 30 Days N > N @ [x] e IS a p py W e n e

observes metrics

HRS |

First part: DMS

—

Publish db2 counts
to CloudWatch

Data
Source

SNS: File
arrived

AWS
Database Migrarion
Service

Save raw data
to S3 landing
bucket

HRS |

DynamoDB
Metadata

Lambda:
Moving file

> HRS

Publish historized
(—

counts to CloudWatch

Count metrics app
from historized data
to AWS CloudWatch

Save raw data
to S3 vault

bucket

Save historized
data to S3

Historization
app

Athena DDL
creation

EMR Spark
clusters

521

Second part: Historization

Data
Source

HRS |

—

Publish db2 counts
to CloudWatch

w0 AWS. __ Saveraw data S:lrﬁ\:/zile
atal gse vigrarion 44 g3 Janding
ervice bucket

DynamoDB
Metadata

Lambda:
Moving file

> HRS

——

Count metrics app
from historized data
to AWS CloudWatch

Save raw data
to S3 vault
bucket

Historization
app

Publish historized
counts to CloudWatch

Save historized
data to S3

EMR Spark
clusters

Athena DDL
creation

531

Historization: components >+ HRS

Historization: components >+ HRS

Amazon Athena

Historization: Athena

Elv_v/s, Services ¥

L Aveek22 v

>:HRS

Ireland ¥ Support ¥

Athena Query editor Saved queries History Data sources Workgroup : primary

~
(¥

Data source Connect data source

AwsDataCatalog v <
Database
sampledb -
Filter tables and views...
v Tables (2) Create table
» elb_logs H
» superstore _ :
v Views (0) Create view

You have not created any views. To create a view,
run a query and click "Create view from query"

HRS |

Newquery1 & Newquery2 @ +

1 CREATE EXTERNAL TABLE IF NOT EXISTS sampledb.superstore (
2 “order” int,
3 “product® string,
“qty” int,
5 “amount” int

6)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'

8 WITH SERDEPROPERTIES (

9 'serialization.format' = ',"',

] 'field.delim' = ','

11) LOCATION 's3://ad-athena-datasets/data/'

12 TBLPROPERTIES ('has_encrypted_data'='false');

Save as Create v (Run time: 0.27 seconds, Data scanned: 0 KB)

Use Ctrl + Enter to run query, Ctrl + Space to autocomplete

Results

Query successful.

Settings Tutorial

Help What's new

Format query Clear

Athena engine version 1

Release versions (@'

Historization: components >+ HRS

Spark jobs on EMR cluster >r HRS

=

data
<l

<A
How it looks like in general E @gﬁ E
AWS S3 AWS EMR AWS S3

pyspark script

HRS |

Historization: script input params

Input parameters

Name

--source_s3_path

--target_s3_path

--load_date
--primary_key._fields

--timestamp_column_name

--is_target_partitioned

--is_athena_table_required

HRS |

Required

True

True

True
True

True

False

False

Type

String

String

String
String

String

Bool

Bool

Description

Source path for DMS outputs

Target path to the Delta Table

Load date for source data in format YYYY-MM-DD
List of fields (comma-separated string) used as primary key for source table

Timestamp column which will be used for historization to define valid_from and valid_to fields,
default 'CTS'

True if target table is partitioned, default is 'True'

True if you want to create/update Athena table and you're sure that table doesn't contain PII
data, default is 'False’

>:HRS

"ID_VALUE",

Historization: algorithm >r HRS

I Read Input Arguments I

I Read Source DF I

HRS |

Historization: algorithm >r HRS

I Read Input Arguments I

I Read Source DF I

Initial load
target s3 path

No has data

Yeos =

target table
is partitioned
and timestamp column
exists

No

Yes \

HRS |

Historization: algorithm >r HRS

I Read Input Arguments I

I Read Source DF I

Initial load
target s3 path

No has data

Yes =

target table
is partitioned
and timestamp column
exists

No

Yes N\

No timestamp column exists Yes

HRS |

Historization: algorithm >r HRS

I Read Input Arguments I

I Read Source DF l

Initial load
target s3 path

No has data

Yes =

target table
is partitioned
and timestamp column
exists

No

Yes N\

No timestamp column exists Yes

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

overwrite Delta Table
T

HRS |

Historization: algorithm >r HRS

I Read Input Arguments I

I Read Source DF l

Initial load
target s3 path

No has data

Yes =
\

target table
is partitioned
and timestamp column
exists

No

Yes W

No timestamp column exists Yes

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

overwrite Delta Table

Yes .,

l

Create DDL for non-
partitioned table

Athena table required

HRS |

Historization: algorithm

HRS |

No

timestamp column exists

No

exists

Yes

target table
is partitioned
and timestamp column

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

add valid_from = so

urce_df.timestamp

add valid_to = '2099-12-31"

overwrite Delta Table

overwrite Delta Table

L

J

Athena table required

Yes .,

l

Create DDL for non-
partitioned table

[Read Input Arguments I

I Read Source DF l

target s3 path
has data

>:HRS

Historization: algorithm

HRS |

No

timestamp column exists

No
exists

Yes

target table
is partitioned
and timestamp column

[Read Input Arguments

I Read Source DF

Initial load
target s3 path

No has data

Yes

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

add valid_from = source_df.timestamp
add valid_to = '2099-12-31"

add valid_from = source_df.timestamp
add valid_to ='2099-12-31'
add load_date = date(source_df.timestamp)

overwrite Delta Table

overwrite Delta Table

write Delta Table partitioned by load_date

L

J

Athena table required Yes

Create DDL for non-
partitioned table

Athena table required Yes

J

Create DDL for
partitioned table

I Repair partitions

Yes

>:HRS

Historization: algorithm

No

—— NO -
exists

timestamp column exists Yes

target table
is partitioned
and timestamp column

[Read Input Arguments I

I Read Source DF l

Initial load
target s3 path

No- has data

Yes

PK and timestamp
columns exist

Yes No -

Full reload

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

overwrite Delta Table

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

add valid_from = source_df.timestamp
add valid_to = '2099-12-31'

add valid_from = source_df.timestamp
add valid_to = '2099-12-31'
add load_date = date(source_df.timestamp)

overwrite Delta Table

overwrite Delta Table

write Delta Table partitioned by load_date

L

J

HRS |

Athena table required Yes .,

Create DDL for non-
partitioned table

Athena table required Yes

J

Create DDL for
partitioned table

|
I Repair partitions I

>:HRS

Historization: algorithm

No

—— NO -
exists

timestamp column exists Yes

target table
is partitioned
and timestamp column

[Read Input Arguments I

I Read Source DF l

Initial load
target s3 path

No- has data

Yes

Yes No -

Full reload

PK and timestamp

columns exist Ye§

Incremental load

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

Merge increment into target table
using PK and valid_to = '2099-12-31'

overwrite Delta Table

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

add valid_from = source_df.timestamp
add valid_to = '2099-12-31'

add valid_from = source_df.timestamp
add valid_to = '2099-12-31'
add load_date = date(source_df.timestamp)

overwrite Delta Table

overwrite Delta Table

write Delta Table partitioned by load_date

L

J

HRS |

Athena table required Yes .,

Create DDL for non-
partitioned table

Athena table required Yes

J

Create DDL for
partitioned table

|
I Repair partitions I

>:HRS

Historization: algorithm

HRS |

No -

timestamp column exists

No ~

Yes

[Read Input Arguments I

I Read Source DF l

Initial load
No

target table
is partitioned
and timestamp column
exists

Yes

target s3 path
has data

Yes

No -

Full reload

PK and timestamp
columns exist

Yes

Incremental load

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

Merge increment into target table

using PK and valid_to = '2099-12-31'

overwrite Delta Table

add valid_from = '1970-01-01'
add valid_to = '2099-12-31'

add valid_to ='2099-12-31'

add valid_from = source_df.timestamp

add valid_from = source_df.timestamp
add valid_to = '2099-12-31'
add load_date = date(source_df.timestamp)

overwrite Delta Table

overwrite Delta Table

write Delta Table partitioned by load_date

No

target table is partitioned Yes

L

J

Athena table required Yes .,

Create DDL for non-
partitioned table

Athena table required

add valid_from = source_df.timestamp
add valid_to = '2099-12-31'

append source_df to Delta Table

delete from Delta Table

where valid_from = valid_to

Yes }
|

Create DDL for I
partitioned table

vacuum Delta Table

I Repair partitions I

>:HRS

Historization: algorithm >r HRS

I Read Input Arguments I

I Read Source DF l

Initial load : t 83 nath
.- arget s3 pa
Nd has data s
target table
is partitioned E PK and timestamp
No and timestamp column Yor No columns exist Yag
exists
Full reload Incremental load
add valid_from = '1970-01-01" Merge increment into target table
add valid_to ='2099-12-31' using PK and valid_to = '2099-12-31'
No - timestamp column exists Yes I
overwrite Delta Table
- - - - - No target table is partitioned Yes
add valid_from = '1970-01-01' add valid_from = source_df.timestamp add valid_from = source_df.timestamp
add valid_to = '2099-12-31' add valid_to = '2099-12-31' add valid_to = '2099-12-31'
add load_date = date(source_df.timestamp)
|
overwrite Delta Table overwrite Delta Table write Delta Table partitioned by load_date add valid_from = source_df.timestamp add valid_from = source_df.timestamp
add valid_to = '2099-12-31" add valid_to = '2099-12-31"
L J T add load_date = date(source_df.timestamp)
append source_df to Delta Table I |
I overwrite Delta Table partitions
where load_date between
Athena table required Yes . Athena table required Yes delete from Delta 1_'ab|e_ min(source_df.timestamp) and
1 where valid_from = valid_to max(source_df.timestamp)
[|
Create DDL for non- Create DDL for I vacuum Delta Table | I vacuum Delta Table I
partitioned table partitioned table
I I
I Repair partitions I I add new partitions to Athena table |

HRS |

Workflow management platform >+ HRS

The workflow is orchestrated by MWAA

Workflow management platform

The workflow is orchestrated by MWAA

HRS |

— Directed
ﬁ Acyclic Graph

@ Amazon S3

Directed Acyclic Graph (DAGs)
are written in Python and
upload to Amazon S3

Scheduling and Monitoring

O [o
28

Amazon MWAA

Pipeline orchestration and
scheduling

o
8

Extract and
Transform

Data is pulled from its
source and modified

e

Load Data

Data is placed where it can
be used

4N

Learn
Run applications against

the data, such as machine
learning and data analytics

> HRS

Analytics
lﬁ Storage
= g
@ Databases

Open Source
or Plug-ins

Ep

Destination systems are
directed to perform actions
by the workflow tasks and
output becomes a source

Airflow: Dag first iteration

—>

Data
Source

HRS |

Publish db2 counts
to CloudWatch

> HRS

DynamoDB
Metadat

Count metrics app
from historized data

AW Clouite

: Fil
Datab. Awla' : Save raw data S:rﬁveée Lambda: Save raw data
ata gse graron| / t0.83 landing Moving file to S3 vault
i bucket bucket

Historization
app

Publish historized
counts to CloudWatch

Save historized
data to S3

EMR Spark
clusters

Athena DDL
creation

73

Airflow: Dag first iteration >r HRS

— get_db2_metrics_0

/ run_dms_0
~ _—* run_hist_step_0 —* run_hist_metrics_step_ 0 —
get_metadata emr_create_job_flow — add_setup_step emr_terminate_cluster
\ > run_hist_step_1 — run_hist_metrics_step_1 —
run_dms_1

— get_db2_metrics_1

HRS |

Airflow: Dag first iteration > HRS

get_metadata

HRS | Ingestion and historization in the Data Lake 75

Airflow: Dag first iteration > HRS

/ run_dms_0

get_metadata

\' run_dms_1

HRS | Ingestion and historization in the Data Lake 76|

Airflow: Dag first iteration > HRS

—> t 2 t .
/ run_dms_0 get_db2_metrics_0
~

get_metadata emr_create_job_flow

s
\ run_dms_1

— get_db2_metrics_1

HRS | Ingestion and historization in the Data Lake 77

Airflow: Dag first iteration > HRS

—» t 2 t v
/ run_dms_0 get_db2_metrics_0
~

get_metadata emr_create_job_flow —* add_setup_step

s
\ run_dms_1

— get_db2_metrics_1

HRS | Ingestion and historization in the Data Lake 78|

Airflow: Dag first iteration > HRS

— get_db2_metrics_0
_—* run_hist_step_0

run_dms_0O
Fd) 3

get_metadata emr_create_job_flow —* add_setup_step
o
\ run_dms_1

> run_hist_step_1

— get_db2_metrics_1

HRS | Ingestion and historization in the Data Lake 79

Airflow: Dag first iteration >r HRS

— get_db2_metrics_0

/ run_dms_0
~ _—* run_hist_step_0 —* run_hist_metrics_step_ 0 —.
get_metadata emr_create_job_flow — add_setup_step emr_terminate_cluster
\ > run_hist_step_1 —* run_hist_metrics_step_1 —
run_dms_1

— get_db2_metrics_1

HRS |

Airflow: Dag first iteration >r HRS

— get_db2_metrics_0

/ run_dms_0
~ _—* run_hist_step_0 —* run_hist_metrics_step_ 0 —
get_metadata emr_create_job_flow — add_setup_step emr_terminate_cluster
\ > run_hist_step_1 — run_hist_metrics_step_1 —
run_dms_1

— get_db2_metrics_1

HRS |

Airflow: Dag first iteration >r HRS

— get_db2_metrics_0

/ run_dms_0
\ _—* run_hist_step_0 —* run_hist_metrics_step_ 0 —

emr_create_job_flow

— get_db2_metrics_1

get_metadata

\ run_dms_

add_setup_step emr_terminate_cluster

> run_hist_step_1 — run_hist_metrics_step_1 —

HRS |

Dag first iteration: Gantt diagramm >r HRS

tasks

2 About~
[|
[|
[|
[|
-
[|
.
[|
I
[|
[|
[|
]
[|
[|
[]
|
lI

time
HRS |

Airflow: Dag second iteration >r HRS

get_db2_metrics_0
run_dms_0 emr_create_job_flow
run_hist_step_0
get_metadata \

HRS |

Airflow: Monitoring and alerting >f HRS

Airflow: Monitoring >f HRS

@example.com'],
: True,

: False,

HRS |

Airflow: Monitoring >f HRS

: timedelta(minutes=3)

HRS |

Airflow: Monitoring >f HRS

: send_zoom_fatitlure_message,

HRS |

Airflow: points to improve >f HRS

Cluster: _ Terminated with errors Master node was terminated due to not enough capacity in the Spot Instance pool

HRS |

EMR EC2 Spot Instances

Name your own price for EC2 Compute

e A market where price of compute
changes based upon Supply and
Demand

e When Bid Price exceeds Spot Market
Price, instance is launched

e Instance is terminated (with 2 minute
warning) if market price exceeds bid
price

e Unused On-Demand Instances

HRS |

on-demand

Cost Difference

reserved

>:HRS

spot

Airflow: points to improve >+ HRS

Cluster: _ Terminated with errors Master node was terminated due to not enough capacity in the Spot Instance pool

O
CAPACITY

DEMAND

- -

HRS |

Airflow: ec2 fleet >+HRS

é R4

ot

e Theinstance fleets configuration for a
cluster offers the widest variety of
provisioning options for EC2
instances

e With instance fleets, you specify
target capacities for On-Demand
Instances and Spot Instances within
each fleet.

Queue Worker Queue Worker
- /N

\

.~ — s — s — e/

Availability Zone 1 Availability Zone 2

(
|
|
!
|
|
X

Spot Fleet

HRS |

That's it? >+ HRS

HRS | 93 |

That'’s it? > HRS

HRS | Ingestion and historization in the Data Lake 94|

Data type issues >fr HRS

e time millis

Data type issues >fr HRS

Spark ParqguetSchemaConverter.scala

e time millis

case t: TimestampLogicalTypeAnnotation if t.getUnit == TimeUnit.MILLIS =>
typeNotImplemented()

HRS |

https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetSchemaConverter.scala#L150

Data type issues

TIMEUNIT-MILLIS

o time_ millis | W

TYPENOT
IMPLEMENTED

LIS ==

https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetSchemaConverter.scala#L150

Data type issues >fr HRS

AS min_datel,

AS max_datel

e time millis
e Inadequate dates

HRS |

Data type issues > HRS

AS m1 [“1_(,;1 atel :
AS max_datel

o time_millis
e Inadequate dates

HRS |

Data type issues

e time millis
e Iinadequate dates

HRS |

Data type issues >f HRS

AS min_datel,

S max_datel

e time millis
e Iinadequate dates
a MAX_DATE1 T
2580-05-15

HRS |

Data type issues

min_datel

e time millis
e inadequate dates
a MAX_DATE1 T
2580-05-15

HRS |

Data type issues >fr HRS

1/10 (tenths)

° tlme mIIIIS Ones Decimal POVI/IOO (hundredths)
) _ Tens x\ / 1/1000 (thousandths)

e inadequate dates N \ 4

e decimal 17.591

10x Bigger
- ————
10x Smaller

2N

HRS |

Data type issues: solution >r HRS

Data type issues: solution >r HRS

DMS: Source Endpoint >f HRS

: 'executeTimeout=3600;"

DMS: ReplicationTask fun part >+ HRS

Source Replication Target
Endpoint Task / Endpoint

HRS | Ingestion and historization in the Data Lake 107 |

DMS: ReplicationTask fun part >f HRS

No tables were found at task initialization. Either the selected table(s) no longer exist
or no match was found for the table selection pattern

HRS |

DMS: ReplicationTask fun part >f HRS

No tables were found at task initialization. Either the selected table(s) no longer exist
or no match was found for the table selection pattern

DataSource schema: my_schm

HRS |

DMS: ReplicationTask fun part >f HRS

No tables were found at task initialization. Either the selected table(s) no longer exist
or no match was found for the table selection pattern

11 ()

7

DataSource schema: my_schm

HRS |

DMS: ReplicationTask fun part

No tables were found at task initialization. Either the selected table(s) no longer exist

or no match was found for the table selection pattern

11

7

DataSource schema: my_schm

HRS |

known issue when using
DB2 as source with
schema name having ()
underscore and less than 8
characters selection rule
fails

>:HRS

DMS: ReplicationTask fun part

No tables were found at task initialization. Either the selected table(s) no longer exist

or no match was found for the table selection pattern

11

7

DataSource schema: my_schm

HRS |

known issue when using
DB2 as source with
schema name having ()
underscore and less than 8
characters selection rule
fails

DMS: ReplicationTask fun part

No tables were found at task initialization. Either the selected table(s) no longer exist

or no match was found for the table selection pattern

11

7

DataSource schema: my_schm

We are in process of updating the documentation with this
limitation.

Being said that there is a workaround to select one specific
table by changing "rule-action" from "include" to "explicit”

HRS |

known issue when using
DB2 as source with
schema name having ()
underscore and less than 8
characters selection rule
fails

DMS: ReplicationTask fun part >f HRS

No tables were found at task initialization. Either the selected table(s) no longer exist
or no match was found for the table selection pattern

11

7 known issue when using
DB2 as source with
schema name having ()
underscore and less than 8
characters selection rule

DataSource schema: my_schm

fails
We are in process of updating the documentation with this
limitation.
Being said that there is a workaround to select one specific
table by changing "rule-action" from "include" to "explicit”
rule- include, exclude, explicit A value that includes or excludes the object or objects selected by the rule. If explicit is specified, you

action can select and include only one object that corresponds to an explicitly specified table and schema.

HRS |

Further work >+ HRS

Publish historized F h |
DynamoDB counts to CloudWatch urther p ans

Metadata R S—
Publish db2 counts Count metrics app r 1
to CloudWatch from historized data 1 1
to AWS CloudWatch 1 1
[| i
B | |
Save historized 1 1

> data to S3

L L I I J

Historization Ingest historized

SNS: Fil data to DWH Exasol
Databa::vlai ettt Save raw data arriveclie Lambda: Save raw data app
Servicg to S8 landing Moving file to S3 vault
bucket bucket

Athena DDL
creation

EMR Spark
clusters

HRS | 15

Achievements >-HRS

Achievements >+HRS

e We have built ETL process for full and
incremental load data from Data Source to
Data Lake

HRS |

Achievements >+HRS

e We have built ETL process for full and
incremental load data from Data Source to
Data Lake

e \We have automated and auto scaled
process

HRS |

Achievements >+HRS

e We have built ETL process for full and

incremental load data from Data Source to
Data Lake

e \We have automated and auto scaled
process

e About 70 tables are running day by day

HRS |

Achievements >+HRS

e We have built ETL process for full and
incremental load data from Data Source to
Data Lake

e We have automated and auto scaled
process
About 70 tables are running day by day
We have just one entry point for adding new
tables to the process - all other steps are
catching up and reusing this metadata

HRS |

Achievements >+HRS

e We have built ETL process for full and
incremental load data from Data Source to
Data Lake

e We have automated and auto scaled
process
About 70 tables are running day by day
We have just one entry point for adding new
tables to the process - all other steps are
catching up and reusing this metadata

e \We enabled process monitoring and
alarming on data and process issues

HRS |

Achievements

HRS |

> HRS

We have built ETL process for full and
incremental load data from Data Source to
Data Lake

We have automated and auto scaled
process

About 70 tables are running day by day

We have just one entry point for adding new
tables to the process - all other steps are
catching up and reusing this metadata

We enabled process monitoring and
alarming on data and process issues

Our data stored in effective way and easy to
access with different tools

Learning points to you >fr HRS

30 NS

*?a Q - 7S

Q&A: Your voice matters > HRS

A

Link to the anonymous survey

https://forms.gle/CXeRdih1V7N1CvWs9

Metadata in DynamoDB >fr HRS

Partition key:
TablelD is the following composition <Source>-<Target>-<SchemaName>-<TableName>

HRS |

Metadata in DynamoDB >fr HRS

Partition key:
TablelD is the following composition <Source>-<Target>-<SchemaName>-<TableName>

Sort key: TableName

HRS |

Metadata in DynamoDB

Partition key:
TablelD is the following composition <Source>-<Target>-<SchemaName>-<TableName>

det-dms-metadata Close

»
Overview Items Metrics Alarms Capacity Indexes Global Tables Backups Contributor Insights Triggers Access control Tags

° ¢

Viewing 1 to 49 item

Scan: [Table] det-d TablelD, A

[scan v [[Table] det-d TableID, v

© Add filter

Start search

TablelD @ “ TableName ~ BrokenDateTimeColumns ~ DecimalWithNullColumns

empty <empty
empty> <empty:.
empty> empty
empty> empty.
Sort key: TableName
y.
<empty> <empty>
empty> empty
<empty> <empty>
empty <empty.
<empty> <empty.
empty empty.
empty empty.

HRS |

> HRS

